CONTENTS

Preface iii

Chapter 1 Introduction to Operational Amplifiers 1

1-1 IC Operational Amplifier 1
 Circuit Symbol and Terminals 1
 Basic Op-Amp Circuit 2
1-2 The Voltage Follower Circuit 4
1-3 The Noninverting Amplifier 6
1-4 The Inverting Amplifier 8

Chapter 2 Operational Amplifier Parameters and Performance 13

2-1 Ideal and Practical Operational Amplifiers 14
 Op-Amp Model 14
 Currents and Impedances 14
 Voltage Gain 15
 Ideal Op-Amp 16
2-2 Basic Op-Amp Internal Circuitry 17
 Current Mirror 17
 Complementary Emitter Follower 18
 Level Shifting Stage 19
 Representative IC Op-Amp 19
2-3 Input, Output, and Supply Voltages 22
 Supply Voltage Options 22
 Input Voltage Range 22
 Output Voltage Range 23
 Common Mode Rejection 23
 Power Supply Rejection 25
2-4 Offset Voltages and Currents 27
 Input and Output Offset Voltages 27
 Input Bias Current Effects 27
 Input Offset Current 29
 Combined Effect of Input Error Sources 29
 Offset Nulling 30
2-5 Input and Output Impedances 31
 Input Impedance 31
 Output Impedance 32
2-6 Slew Rate and Frequency Limitations 34
 Slew Rate 34
 Frequency Limitations 35

© Oxford University Press
Chapter 3 Op-Amps as DC Amplifiers 42

3-1 Biasing Op-Amps 43
 Bias Current Paths 43
 Bias Circuit Resistor Values 43
 Voltage Divider Bias 44
 Basing BIFET Op-Amps 45

3-2 Direct-Coupled Voltage Follower 46
 Performance 46
 Voltage Follower Compared to an Emitter Follower 48

3-3 Direct-Coupled Noninverting Amplifiers 48
 Design 48
 Performance 51
 Computer Analysis of a Noninverting Amplifier 52

3-4 Direct-Coupled Inverting Amplifiers 52
 Design 52
 Performance 54
 Computer Analysis of an Inverting Amplifier 55

3-5 External Nulling Methods 55

3-6 Summing Amplifiers 57
 Inverting Summing Circuit 57
 Noninverting Summing Circuit 59

3-7 Difference Amplifier 61
 Circuit Operation 61
 Input Resistances 63
 Common Mode Voltages 63
 Output Level Shifting 64
 Circuit Design 64
 Computer Analysis of a Difference Amplifier 66

3-8 Instrumentation Amplifier 66
 Differential Input/Output Amplifier 66
 Complete Instrumentation Amplifier 68
 Computer Analysis of an Instrumentation Amplifier 72
 Integrated Circuit Instrumentation Amplifier 72

Chapter 4 Op-Amps as AC Amplifiers 78

4-1 Capacitor-Coupled Voltage Follower 79

4-2 High Z_{in} Capacitor-Coupled Voltage Follower 82
 Computer Analysis 85

4-3 Capacitor-Coupled Noninverting Amplifier 85

4-4 High Z_{in} Capacitor-Coupled Noninverting Amplifier 88
 Computer Analysis 90
4-5 Capacitor-Coupled Inverting Amplifier 92
4-6 Setting the Upper Cutoff Frequency 92
 Computer Analysis 94
4-7 Capacitor-Coupled Difference Amplifier 95
4-8 Use of a Single-Polarity Supply 96
 Voltage Follower 96
 Noninverting Amplifier 98
 Inverting Amplifier 100

Chapter 5 Operational Amplifier Frequency Response and Compensation 105

5-1 Op-Amp Circuit Stability 106
 Loop Gain and Loop Phase Shift 106
 Single-Stage BJT Amplifier Gain and Phase Responses 107
 Uncompensated Op-Amp Gain and Phase Response 108
 Phase Margin 110
5-2 Frequency Compensation Methods 112
 Phase-Lag and Phase-Lead Compensation 112
 Miller Effect Compensation 113
 Manufacturer’s Recommended Compensation 114
5-3 Internally Compensated Op-amps 116
 Compensated Op-Amp Gain and Phase Response 116
 Amplifier Stability and Gain 117
5-4 Circuit Bandwidth and Slew Rate 118
 Lower and Upper Cutoff Frequencies 118
 Gain-Bandwidth Product 120
 Full-Power BW and Slew Rate 121
5-5 Stray and Load Capacitance Effects 123
 Effects of Stray Capacitance on Circuit Stability 123
 Effects of Load Capacitance on Circuit Stability 126
5-6 Circuit Stability Precaution 129
 Power Supply Decoupling 129
 Stability Precautions 130

Chapter 6 Noise in Op-Amp Circuits 134

6-1 Thermal Noise 135
 Resistors Noise 135
 Noise Gain 136
6-2 Shot Noise 137
6-3 Op-Amp Noise 139
6-4 Signal-to-Noise Ratio 141
6-5 Minimizing Noise 143
 Grounding and Screening 143

Chapter 7 Miscellaneous Op-Amp Linear Applications 147

7-1 Voltage Sources 148
 Positive and Negative Voltage Source 148
Contents

Computer Analysis of Voltage Source 150

7-2 Current Sources and Current Sinks 152
 Current Sources 152
 Current Sinks 154
 Computer Analysis of a Current Sink 156

7-3 Current Amplifiers 157
 Current-to-Voltage Converter 157
 Current Amplifier 157
 Computer Analysis of a Current Amplifier 159

7-4 DC Voltmeter Circuit 159

7-5 Linear Ohmmeter Circuit 161
 Computer Analysis of the Linear Ohmmeter 164

7-6 Log and Antilog Amplifiers 165
 Basic Log Amplifier 165
 Basic Antilog Amplifier 166
 Temperature Compensation 167

Chapter 8 Switching, Differentiating, and Integrating Circuits 173

8-1 Op-Amps in Switching Circuits 174
 Output Voltage Swing 174
 Maximum Differential Input Voltage 174
 Slew Rate 175
 Frequency Compensation 176

8-2 Voltage Level Detectors 176
 Zero Crossing Detector 176
 Level Detector 178
 Voltage Level Monitor 178
 Computer Analysis 181

8-3 Inverting Schmitt Trigger Circuit 182
 Circuit Operation 182
 Positive Feedback 183
 Triggering Points 183
 Voltage Waveforms 183
 Hysteresis 184
 Input/Output Characteristic 184
 Circuit Design 185
 Adjusting the Trigger Points 186

8-4 Noninverting Schmitt Trigger Circuit 187
 Circuit Operation 187
 Adjusting the Trigger Points 188
 Computer Analysis 190

8-5 IC Voltage Comparator 191
 Comparator Operation 191
 Comparator Specification 192
 Comparator Level Detectors 192
 Window Detector 194
 Comparator as a Schmitt Trigger 195
 Computer Analysis 196

© Oxford University Press
8-6 Differentiating Circuits

Differentiating Circuit Waveforms 197
Basic Differentiating Circuit 198
Practical Op-Amp Differentiating Circuit 200
Differentiator Circuit Design 200
Differentiator Performance 202
Sine Wave Response 202

8-7 Integrating Circuits

Integrating Circuit Waveforms 204
Basic Integrating Circuit 205
Practical Op-Amp Integrating Circuit 206
Integrator Circuit Design 206
Integrator Performance 207
Sine Wave Response 208

Chapter 9 Signal Processing Circuits 214

9-1 Precision Half-Wave Rectifiers

Saturating Precision Rectifier 215
Nonsaturating Precision Rectifier 216
Two-Output Precision Half-Wave Rectifier 218

9-2 Precision Full-Wave Rectifiers

Half-Wave Rectifier and Summing Circuit 219
Computer Analysis 221
High Input Impedance Precision Full-Wave Rectifier 221

9-3 Limiting Circuits

Peak Clipper 224
Dead Zone Circuit 226
Precision Clipper 227
Computer Analysis 228
Precision Plus/Minus Clipping Circuit 228

9-4 Clamping Circuits

Diode Clamping Circuit 231
Precision Clamping Circuit 232
Computer Analysis 235

9-5 Peak Detectors

Precision Rectifier Peak Detector 235
Voltage Follower Peak Detector 237

9-6 Sample-and-Hold Circuits

Op-Amp Sample-and-Hold 239
IC Sample-and-Hold 242

Chapter 10 Signal Generators 247

10-1 Astable Multivibrator

Circuit Operation 248
Astable Design 249

10-2 Monostable Multivibrator

Monostable Operation 251
Recovery Time 253

© Oxford University Press
Contents

- **Monostable Design** 253
- **Triggering the Monostable** 255
- **Computer Analysis** 257

10-3 Triangular Wave Generator 258
- **Schmitt-Integrator Combination** 258
- **Design Calculations** 259

10-4 Modifications to the Triangular Wave Generator 260
- **Frequency and Duty-Cycle Adjustment** 260
- **Voltage-Controlled Oscillator Modification** 263
- **Computer Analysis** 265

10-5 Signal Generator Output Controls 266

10-6 555 Timer Monostable 268
- **Timer Block Diagram** 268
- **Timer Monostable Circuit** 269
- **Designing a 555 Monostable** 270
- ** Modifications to the Basic 555 Monostable** 271
- **Timing and Frequency Limitations** 272

10-7 Timer Pulse and Square Wave Generators 273
- **Astable Multivibrator** 273
- **555 Astable Design** 274
- **Computer Analysis** 275
- **Square Wave Generator** 275
- **Another Square Wave Generator Circuit** 276
- **Computer Analysis** 278

10-8 Miscellaneous Timer Circuits 278
- **Voltage-Controlled Oscillator** 278
- **Delay Timers** 280
- **Sequential Timers** 281
- **Pulsed-Tone Oscillator** 282
- **The 7555 CMOS Timer** 283

Chapter 11 Sinusoidal Oscillators 289

11-1 Phase Shift and Quadrature Oscillators 290
- **Phase Shift Oscillator Circuit** 290
- **Phase Shift Oscillator Design** 291
- **Quadrature Oscillator** 292

11-2 Colpitts and Hartley Oscillators 293
- **Colpitts Oscillator** 293
- **Circuit Design** 295
- **Hartley Oscillator** 296

11-3 Wein Bridge Oscillator 297

11-4 Oscillator Amplitude Stablization 300
- **Output Amplitude** 300
- **Diode Stabilization** 300
- **Computer Analysis** 302
- **Voltage Divider Stabilization** 302

© Oxford University Press
Chapter 12 Active Filters \[317\]

12-1 Filter Types and Characteristics
- Low-Pass 318
- High-Pass 318
- Band-Pass 318
- Notch 318
- Fall-Off Rate 319
- Filter Design Categories 320

12-2 First-Order Active Filters
- First-Order Low-Pass Filter 321
- First-Order High-Pass Filter 324

12-3 Second-Order Filters
- Second-Order Low-Pass Filter 326
- Second-Order High-Pass Filter 328

12-4 Third-Order Filters
- Third-Order Low-Pass Filter 331
- Third-Order High-Pass Filter 333

12-5 Band-Pass Filters
- Multistage Band-Pass Filter 335
- Single-Stage Band-Pass Filter 336
- Bandwidth 338
- Narrowband Single-Stage Band-Pass Filter 340

12-6 Notch Filters 341

12-7 All-Pass Phase Shifting Circuits
- Phase-Lag Circuit 343
- Phase-Lead Circuit 346

12-8 State-Variable Filter
- Computer Analysis 350

12-9 IC Switched-Capacitor Filters
- Switched-Capacitor Resistor Simulation 350
- IC Filter Circuit 352

Chapter 13 DC Voltage Regulators \[359\]

13-1 Voltage Regulator Basics
- Regulator Action 360
- Source Effect 361
Contents

13-2 Op-Amp Series Voltage Regulator 362
 Basic Circuit 362
 Series Regulator Design 364
 Series Regulator Performance 366

13-3 Adjustable Output Regulators 367
 Output Voltage Adjustment 367
 High Output Current Circuit 368
 Computer Analysis 370

13-4 Output Current Limiting 371
 Short-Circuit Protection 371
 Fold-Back Current Limiting 373

13-5 IC Linear Voltage Regulators 376
 723 IC Regulator 376
 LM317 and LM337 IC Regulators 379
 LM340 Regulators 381

13-6 Switching Regulators 381
 Switching Regulator Operation 381
 Comparison of Linear and Switching Regulators 383
 Step-Down Converter 384
 Step-Down Converter Equations 384
 Step-Up Converter 388
 Inverting Converter 390

13-7 Switching Regulator Controller 392
 Function Block Diagram 392
 Step-Down Converter Using an MC34063 393
 Variable Off Time Modulator 394
 Catch Diode Selection 395
 Diode Snubber 395
 High Power Converters 395

Chapter 14 Audio Power Amplifiers 400

14-1 BJT Power Amplifier With Op-Amp Driver 401
 Op-Amp Power Amplifier 401
 Resistor Calculations 403
 Capacitor Calculations 404
 Transistor Specifications 404
 Op-Amp Specification 404
 Diodes 405
 Computer Analysis 408

14-2 Power Amplifier Performance Improvement 409
 Darlington-Connected Output Transistors 409
 Quasi-Complementary Output Stage 412
 Output Current Limiting 413
 VBE Multiplier 413
 Use of Bootstrapping Capacitors 415
 Load Compensation 420
 Power Supply Decoupling 420

© Oxford University Press
14-3 IC Power Amplifier Driver 421
14-4 MOSFET Power Amplifier With Op-Amp Driver 424
 Advantages of MOSFETs 424
 Power Amplifier with MOSFET Output Stage 424
 Output Voltage Swing 426
 MOSFET Power Amplifier Design 427
 Computer Analysis 430
 Bias Control 432
 Complete Op-Amp MOSFET Power Amplifier 433
14-5 IC Power Amplifiers 434
 250 mW IC Power Amplifier 434
 Bridge-Tied Load Amplifier 435
 2.5 W IC Power Amplifier 437
 7 W IC Power Amplifier 441
 68 W IC Power Amplifier 441

Chapter 15 Digital-to-Analog and Analog-to-Digital Conversion 447
15-1 Analog/Digital Conversion Basics 448
 Resolution 448
 Analog-to-Digital Conversion 449
 LSB and MSB 449
 Digital-to-Analog Conversion 450
 Settling Time 451
 Monotonicity 451
 Accuracy 451
15-2 Digital-to-Analog Conversion 451
 Weighted Resistor DAC 451
 R-2R DAC 454
 Multiplying DAC 456
 Integrated Circuit 8-Bit DAC 457
 Computer Analysis 457
15-3 Parallel ADC 459
 Simple 3-Bit Parallel ADC 459
15-4 ADC Counting Methods 461
 AND Gate 461
 Flip-Flops 462
 Counting Registers 464
 Frequency Division 465
 Linear Ramp ADC 465
 Dual-Slope Integrator ADC 467
 Digital Ramp ADC 468
 Successive Approximation ADC 470

Chapter 16 Phase-Locked Loop 473
16-1 Basic Phase-Locked Loop System 474
16-2 PLL Components 476
Contents

Phase Detector 476
Phase/Frequency Detector 478
Filter 479
Amplifier 479
VCO 479

16-3 PLL Performance Factors 479
Loop Gain 479
Tracking Range 481
Capture Range 482
Frequency Synthesis 484

16-4 PLL Frequency Response and Compensation 485
System Characteristics 485
VCO as an Integrator 485
Instability 487
Compensation 488

16-5 Integrated Circuit PLL 488

Appendix A IC Data Sheets 494
A-1 741 Op-amp 494
A-2 LM709 Operational Amplifier 498
A-3 108 and 308 Op-amp 499
A-4 353 Op-amp 503

Appendix B Standard Value Components 506
Table B-1 Typical Standard-Value Resistors 506
Table B-2 Typical Standard-Value Capacitors 508

Appendix C Answers to Odd-Numbered Problems 509

Index 515

© Oxford University Press
CHAPTER 1
Introduction to Operational Amplifiers

Objectives

After studying this chapter, you will be able to

1. Sketch the circuit symbol for an operational amplifier (op-amp) and identify all terminals.
2. Draw a basic (three bipolar junction transistor) op-amp internal circuit diagram. Identify all terminals, and explain the circuit operation.
4. Draw the diagram for an op-amp noninverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.
5. Draw the diagram for an op-amp inverting amplifier. Explain the circuit operation, and calculate the voltage gain for given resistor values.

INTRODUCTION

Operational amplifiers (op-amps) are very high gain amplifier circuits with two high-impedance input terminals and one low-impedance output. The input terminals are identified as inverting input and noninverting input. The basic op-amp circuit consists of a differential amplifier input stage, a level shifting intermediate stage, and an emitter-follower output stage. Operational amplifiers can be employed for a great many circuit applications by using various combinations of externally connected components. The simplest of these are the voltage follower, the noninverting amplifier, and the inverting amplifier.

1-1 IC OPERATIONAL AMPLIFIER

Circuit Symbol and Terminals

The circuit symbol for an op-amp, illustrated in Fig. 1-1, shows that there are two input terminals, one output terminal, and two supply terminals. Plus−minus supply voltages (+Vcc and −Vee) are normally used and these typically range from ±5 to ±22 V. The input terminals are designated as inverting input and noninverting input. The basic op-amp circuit consists of a differential amplifier input stage, a level shifting intermediate stage, and an emitter-follower output stage. Operational amplifiers can be employed for a great many circuit applications by using various combinations of externally connected components. The simplest of these are the voltage follower, the noninverting amplifier, and the inverting amplifier.

© Oxford University Press
output, and a positive-going signal at the noninverting input generates a positive-going (noninverted) output.

Basic Op-amp Circuit

The basic circuit of an IC op-amp consists of a bipolar junction transistor (BJT) differential amplifier input stage combined with an emitter follower output. This is illustrated in Fig. 1-2. Note the plus—minus supply (+V_{CC} and $-V_{EE}$), which is normally used. Transistors Q_1 and Q_2 together with resistors R_E and R_C constitute a differential amplifier, which produces a voltage change at the collector of Q_2 when a voltage difference is applied to the bases of Q_1 and Q_2. The Q_2 collector voltage is passed to the voltage divider (R_a and R_b), which shifts the dc voltage level down to approximately half-way between $+V_{CC}$ and $-V_{EE}$. This voltage is then applied to the output via the emitter follower consisting of transistor Q_3 and emitter resistor R_{E3}.

Example 1-1

Calculate the voltage and current levels for the circuit shown in Fig. 1-2 if $V_{CC} = \pm 10 \text{ V}$, $V_i = V_2 = 0$, and the components are $R_a = 47 \text{ k}\Omega$, $R_b = 100 \text{ k}\Omega$, and $R_C = R_E = R_{E3} = 4.7 \text{ k}\Omega$. For simplicity, assume that Q_1 and Q_2 are
perfectly matched, that the current through R_a and R_b has no effect on the voltage drop across R_C, and that the Q_3 base current has no effect on the voltage divider.

Solution

\[
V_{RE} = V_{B1} - V_{BE} - V_{EE}
\]
\[
= 0 - 0.7\ V - (-10\ V)
\]
\[
= 9.3\ V
\]

\[
I_E = \frac{V_{RE}}{R_E} = \frac{9.3\ V}{4.7\ k\Omega}
\]
\[
= 1.98\ mA
\]

\[
I_{C1} = I_{C2} = \frac{I_E}{2} = 0.99\ mA
\]

\[
V_{RC} = I_{C2} \times R_C
\]
\[
= 0.99\ mA \times 4.7\ k\Omega
\]
\[
= 4.65\ V
\]

\[
V_{RaRb} = V_{CC} - V_{EE} - V_{RC}
\]
\[
= 10\ V - (-10\ V) - 4.65\ V
\]
\[
= 15.35\ V
\]

\[
V_{RB} = \frac{V_{RaRb} \times R_b}{R_a + R_b}
\]
\[
= \frac{15.53\ V \times 100\ k\Omega}{100\ k\Omega + 4.7\ k\Omega}
\]
\[
= 10.4\ V
\]

\[
V_o = V_{EE} + V_{RB} - V_{BE}
\]
\[
= -10\ V + 10.4\ V - 0.7\ V
\]
\[
= -0.3\ V
\]

To further investigate the operation of the circuit in Fig. 1-2, suppose that a positive input ($+V_i$) is applied to the base of Q_1 and that the Q_2 base is held at ground level. This produces an increase in I_{C1} and a decrease in I_{C2}, resulting in a decreased voltage drop across resistor R_C. Consequently, V_{C2} and V_{B3} are increased, producing a positive-going output voltage. If the input to Q_1 base is negative ($-V_i$) instead of positive, I_{C1} is decreased and I_{C2} is increased, resulting in an increase in V_{RC}, a decrease in V_{B3}, and a consequent negative-going output.

It is seen that a positive-going input at the base of Q_1 produces a positive-going output at the Q_3 emitter, and that a negative-going input to Q_1 gives a negative-going output. This means that an input voltage applied to Q_1 base results in an output having the same polarity as the input (a noninverted output). Thus, the terminal at the base of Q_1 is the *noninverting input*.

Now assume that Q_1 base is maintained at ground level while a positive input ($+V_2$) is applied to the base of Q_2. In this case I_{C1} is decreased and I_{C2} is
increased, producing an increased voltage drop across R_C and a consequent negative-going output. When the input to Q_2 base is negative ($-V_2$) instead of positive, I_{C2} is decreased, I_{C1} is increased, V_{RC} is decreased, and the output is positive-going. So, an input voltage to Q_2 base results in an output having the opposite polarity to the input (an inverted output). So, the terminal at the base of Q_2 is the *inverting input*.

The differential amplifier stage offers high input impedance (Z_i) at the BJT bases. The emitter follower output stage gives a low output impedance (Z_o). The input stage also provides voltage gain, and the more complex circuitry of a practical IC op-amp produces much higher gain than would be available from the simple differential amplifier stage illustrated. As with all amplifiers, the voltage gain is the output voltage divided by the input voltage. In this case, the input voltage is the difference between the two input terminal voltages (V_D). Where no negative feedback is involved, the voltage gain is termed the *open-loop voltage gain* (A_{OL}) (or $A_{v(OL)}$). When negative feedback is employed, the voltage gain becomes the *closed-loop gain* (A_{CL}). The high input impedance and the low output impedance are also enhanced by the practical op-amp circuitry, and they are both very much improved by the use of negative feedback in typical op-amp applications.

Section Review

1-1.1 Sketch the graphic symbol for an op-amp and identify all of the terminals.

1-1.2 Sketch the basic (three BJT) internal circuit for an op-amp. Identify the inverting and noninverting terminals and briefly explain the circuit operation.

Practice Problem

1-1.1 Calculate V_o for the circuit in Example 1-1 when the supply is $V_{CC} = \pm 15$ V and R_C and R_E are changed to 5.6 kΩ.

1-2 THE VOLTAGE FOLLOWER CIRCUIT

The IC op-amp lends itself to a wide variety of applications. The very simplest of these is the *voltage follower* shown in Fig. 1-3(a). The output terminal is connected directly to the inverting input terminal, the signal is applied to the noninverting input, and the load is directly coupled to the output. The output voltage now follows the input, giving the circuit a voltage gain of 1, a very high input impedance, and a very low output impedance.

To understand how the voltage follower operates, consider the basic op-amp circuit reproduced in Fig. 1-3(b). As in Fig. 1-3(a), the output (terminal 6) is connected to the inverting input terminal (terminal 2). With terminal 3 grounded, terminal 2 and the output must also be at ground level. If the input voltage (V_i) is increased above ground level, I_{C1} is increased and I_{C2} is decreased, causing V_{C2} to be decreased and thus producing an increase in V_{o} which brings V_2 back to equality with V_i. If V_2 were somehow to go above the level of V_i, I_{C2} would be increased to produce a drop in V_o which would
drive V_2 back to equality with V_i. It is seen that there is 100% negative feedback (NFB), which maintains the output voltage equal to the input. The output always follows the input; hence the name voltage follower.

The output of a voltage follower does not perfectly follow the input, because there has to be a very small difference between the two input terminals (a differential input, V_D) to produce the output voltage change. This depends on the op-amp amplification without feedback, known as the open-loop voltage gain (A_{OL} or $A_{v(OL)}$). When negative feedback is employed, the voltage gain becomes closed-loop gain (A_{CL}).

The voltage follower has a high input impedance, a low output impedance, and a closed-loop voltage gain of 1. This is similar to a BJT emitter follower. However, the difference between the dc input and output voltages with a voltage follower is typically less than 50 μV compared to 0.7 V for an emitter follower. As will be demonstrated, the voltage follower also has a much higher input impedance and a much lower output impedance than the emitter follower.

Example 1-2

Calculate the difference between the input and output voltages for a voltage follower with a 3 V input if the op-amp has $A_{OL} = 200,000$.
Solution

\[V_o = \frac{V_o}{A_{OL}} = \frac{3\,\text{V}}{200\,000} = 15\,\mu\text{V} \]

Practice Problems

1-2.1 Calculate the precise peak output voltage levels when a ±100 mV signal is applied as input to a voltage follower that uses an op-amp with \(A_{OL} = 100\,000 \).

1-2.2 The output of a voltage follower is to follow the input within 20 μV. Determine the minimum open-loop gain of the amplifier if the maximum input is ±5 V.

1-3 THE NONINVERTING AMPLIFIER

The noninverting amplifier circuit shown in Figs. 1-4(a) and (b) behaves in a similar way to a voltage follower, except that the output voltage is divided by resistors \(R_1 \) and \(R_2 \) before being fed back to the inverting terminal. Consider the conditions that exist when the noninverting input is grounded. As is the case of the voltage follower, the inverting input terminal must also be at (or very close to) ground, and thus the junction of \(R_1 \) and \(R_2 \) is also at ground level. With both ends of resistor \(R_2 \) at ground level, there is no current flow through \(R_2 \), and so (neglecting the very small bias current into terminal 2) there is no current through \(R_1 \) and no voltage drop across \(R_1 \). Consequently, the circuit output voltage equals the input, which is at ground level.

Now suppose that a +100 mV input is applied to terminal 3. As explained, the output will move to a level that makes the feedback voltage (to terminal 2) equal to the voltage at terminal 3. The feedback voltage is developed across resistor \(R_2 \), and the output appears across \(R_1 + R_2 \). So,

\[V_{R2} = V_i = I_1 R_2 \]

and

\[V_o = I_1 (R_1 + R_2) \]

giving a closed-loop voltage gain

\[A_{CL} = \frac{V_o}{V_i} = \frac{I_1 (R_1 + R_2)}{I_1 R_2} \]

or,

\[A_{CL} = \frac{R_1 + R_2}{R_2} \quad (1-1) \]

Example 1-3

A noninverting amplifier, as in Fig. 1-4, has \(R_1 = 8.2\,\text{kΩ} \) and \(R_2 = 150\,\Omega \). (a) Calculate the voltage gain. (b) Determine a new resistance for \(R_2 \) to give \(A_{CL} = 75 \).
Solution

(a) From Eq. 1-1

\[A_{CL} = \frac{R_1 + R_2}{R_2} = \frac{8.2 \, k\Omega + 150 \, \Omega}{150 \, \Omega} \]

\[= 55.7 \]

(b) Again from Eq. 1-1

\[A_{CL} = \frac{R_1 + R_2}{R_2} = \frac{R_1}{R_2} + 1 \]

giving

\[R_2 = \frac{R_1}{A_{CL} - 1} = \frac{8.2 \, k\Omega}{75 - 1} \]

\[= 111 \, \Omega \]
Practice Problems

1-3.1 For cases (a) and (b) in the circuit in Example 1-3, calculate the voltages across resistors R_1 and R_2 when a +50 mV signal is applied as input.

1-3.2 A noninverting amplifier, as in Fig. 1-4, has $R_1 = 4.7 \, \text{k}\Omega$ and $R_2 = 220 \, \Omega$.

(a) Determine the closed-loop voltage gain. (b) Calculate the difference between the two input terminal voltages for a 300 mV input if the op-amp has $A_{\text{OL}} = 100 \, 000$.

1-4 THE INVERTING AMPLIFIER

The circuit shown in Fig. 1-5(a) is essentially the same as the noninverting amplifier in Fig. 1-4(a) with the important exception that the noninverting terminal is grounded and the input voltage is applied to resistor R_2. In this case, a positive-going input voltage produces a negative-going output and vice versa. So, the circuit is an *inverting amplifier*. Figure 1-5(b) shows the way the circuit is usually drawn. Note that the junction of the two resistors is connected to the op-amp inverting input terminal, the noninverting terminal is grounded, and the input is applied between R_2 and ground, exactly as in Fig. 1-5(a).

Figure 1-5(c) shows the basic op-amp circuit connected as an inverting amplifier. When a positive-going input is applied to R_2, I_{C2} is increased, thus increasing the voltage drop across R_C and driving the output voltage down. Because the base of Q_1 is grounded, the base of Q_2 will always be maintained at ground level (by negative feedback) regardless of the level of V_i. Thus, when V_i is applied, the output voltage moves to the level that keeps the inverting input terminal at ground. For this reason, the inverting input terminal in this type of circuit is referred to as a *virtual ground* or *virtual earth*.

Note from the above explanation that V_o is moved in a negative direction when V_i is positive. Similarly, when V_i is negative, V_o has to move in a positive direction to keep the op-amp inverting input terminal at ground level.

Now return to Fig. 1-5(b) and recall that the voltage at the inverting input terminal always remains close to ground because the noninverting terminal is grounded. Thus, the junction of R_1 and R_2 always remains at ground level. With V_i at one of R_2 and ground at the other end, V_i appears across R_2, as illustrated. Also, with V_o at one end of R_1 and ground at the other end, V_o is seen to be developed across R_1. Ignoring the very small bias current flowing into the op-amp inverting input terminal, the current I_1 effectively flows through both R_1 and R_2. The input and output voltages can now be expressed as

$$V_i = I_1 R_2$$

and

$$V_o = - I_1 R_1$$

The closed-loop voltage gain is

$$A_{\text{CL}} = \frac{V_o}{V_i} = \frac{-I_1 R_1}{I_1 R_2}$$
or,

\[A_{CL} = -\frac{R_1}{R_2} \]

(1-2)

The minus sign in Eq. 1-2 indicates that the output is inverted with respect to the input.

Example 1-4

An inverting amplifier, as in Fig. 1-5, has \(R_1 = 8.2 \, \text{kΩ} \) and \(R_2 = 270 \, \text{Ω} \). (a) Determine the voltage gain. (b) Calculate a new resistance for \(R_2 \) to give \(A_{CL} = 60 \).
Solution
(a) From Eq. 1-2
\[A_{CL} = -\frac{R_1}{R_2} = -\frac{8.2 \, \text{k}\Omega}{270 \, \Omega} \]
\[= -30.4 \]
(b) From Eq. 1-2
\[R_2 = \frac{R_1}{A_{CL}} = \frac{8.2 \, \text{k}\Omega}{60} \]
\[= 137 \, \Omega \]

Practice Problems
1-4.1 For cases (a) and (b) in the circuit in Example 1-4, calculate the current through resistors \(R_1 \) and \(R_2 \) when a +100 mV signal is applied as input.
1-4-2 An inverting amplifier, as in Fig. 1-5, has \(R_1 = 3.9 \, \text{k}\Omega \) and \(R_2 = 180 \, \Omega \).
(a) Determine the voltage gain. (b) If the op-amp has \(A_{OL} = 200,000 \), calculate the voltage difference between the op-amp input terminals when a 200 mV input is applied.

Review Questions
Section 1-1
1-1 Sketch the circuit symbol for an op-amp and identify all terminals.
1-2 Draw a basic (three BJT) op-amp internal circuit diagram. Identify the inverting input, noninverting input, and output terminals. Explain the circuit operation.

Section 1-2
1-3 Draw a circuit diagram for a voltage follower (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Discuss the voltage follower operation.

Section 1-3
1-4 Draw a circuit diagram for a noninverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain.

Section 1-4
1-5 Draw a circuit diagram for an inverting amplifier (a) using an op-amp graphic symbol and (b) using the basic three BJT op-amp circuit. Explain the circuit operation, and write the equation for the closed-loop voltage gain. Explain the term virtual ground.

Problems
Section 1-1
1-1 Recalculate the circuit current and voltage levels for the basic three BJT op-amp circuit in Example 1-1 when the output is directly connected to the inverting input terminal.
A basic op-amp circuit as in Fig. 1-2 has the following components:
\[R_C = R_E = R_{E3} = 6.8 \, k\Omega, \quad R_a = 56 \, k\Omega, \quad \text{and} \quad R_b = 120 \, k\Omega. \]
The supply is \(V_{CC} = \pm12 \, V \). Calculate the circuit current and voltage levels when the output is directly connected to the inverting input terminal. Assume that \(Q_1 \) and \(Q_2 \) are perfectly matched and that \(I_{E3} \) has no effect on the voltage divider.

Section 1-2

1-3 A 741 op-amp (Data Sheet A-1 in Appendix A) is connected as a voltage follower. If \(V_i = 750 \, mV \) and the amplifier open-loop gain is the only error source, calculate the precise level of \(V_o \) for (a) the specified minimum voltage gain and (b) for the specified typical gain.

1-4 An LM308 op-amp (Data Sheet A-3 in Appendix A) is substituted in place of the 741 in Problem 1-3. Calculate the output voltages for cases (a) and (b) once again.

1-6 A voltage follower using an LM308 op-amp is to reproduce the input with a maximum error of 10 \(\mu \)V due to the op-amp open-loop gain. Calculate the acceptable minimum input voltage.

Section 1-3

1-7 An op-amp noninverting amplifier, as in Fig. 1-4, has \(R_1 = 22 \, k\Omega \) and \(R_2 = 120 \, \Omega \). Calculate the output voltage produced by a 75 mV input.

1-8 An op-amp noninverting amplifier is to have a voltage gain of 101. If \(R_2 = 180 \, \Omega \) in Fig 1-4, determine a suitable resistance value for \(R_1 \).

1-9 A 120 mV signal is to produce a 12 V output from an op-amp noninverting amplifier. If a 15 k\(\Omega \) resistor is to be used for \(R_1 \) (as in Fig. 1-4), determine a suitable resistance value for \(R_2 \).

1-10 Calculate the closed-loop gain for a noninverting amplifier, as in Fig. 1-4, with \(R_1 = 27 \, k\Omega \) and \(R_2 = 390 \, \Omega \). Determine the voltage gain that results if the resistor positions are reversed.

Section 1-4

1-11 An op-amp inverting amplifier, as in Fig. 1-5(b), has \(R_2 = 120 \, \Omega \) and \(R_1 = 22 \, k\Omega \). Calculate the output voltage produced by a 50 mV input.

1-12 An op-amp inverting amplifier is to have a voltage gain of 150. If \(R_1 = 33 \, k\Omega \) in Fig 1-5(b), determine a suitable resistance value for \(R_2 \).

1-13 Calculate the closed-loop voltage gain for an inverting amplifier, as in Fig. 1-5(b), which has \(R_1 = 39 \, k\Omega \) and \(R_2 = 680 \, \Omega \). Determine the new voltage gain if the resistor positions are reversed.

1-14 An op-amp inverting amplifier, as in Fig. 1-5(b), is to have a 0.5 V input signal and a 9 V output. Determine a suitable resistance value for \(R_2 \) if \(R_1 = 12 \, k\Omega \).
Practice Problem Answers

1-1.1 -0.2 V
1-2.1 ±(100 mV – 0.1 μV)
1-2.2 250 000
1-3.1 (50 mV, 2.7 V), (50 mV, 3.69 V)
1-3.2 22.4, 67 μV
1-4.1 370 μV, 730 μA
1-4.2 -21.7, 21.7 μV